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ABSTRACT

i The rate of convergence of the finite element method is a function of
the strategy by which the number of degrees of freedom are increased.

Alternative strategies are examined in the light of recent theoretical

results and computational experience.
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1. Introduction

I In finite element analysis convergence can be achieved in several

different ways, nevertheless it is useful to distinguish among three basic

modes of convergence. (1) The basis functions for each finite element can

Ibe fixed and the diameter of the largest element, h max allowed to approach

zero. This mode is called h-convergence and its computer implementation

1 the h-version of the finite element method. (2) The finite element mesh

can be fixed and the minimal order of (polynomial) basis functions, p min'

allowed to approach infinity. This mode is called p-convergence and its

computer implementation the p-version of the finite element method.

(3) Mesh refinement can be combined with increments in the order of poly-

nomial basis functions. There are many possible variations within each

mode and there are other convergence processes as well. For example, we

Imay concurrently decrease h mxand allow Poisson's ratio to approach the

value of 1/2 to obtain the limiting case for incompressible solids.

The fact that convergence occurs has been the basis for justification

of the finite element method but, as far as state of the art finite element

analysis is concerned, convergence is not actually attempted in the compu-

tational process. Analysts are generally concerned with some specific

finite element mesh and a corresponding fixed set of basis functions. The

Iquestion of whether the choice of mesh and basis functions is adequate for

the purposes of an analysis is not addressed directly. Rather, the analyst

relies on his judgement and experience to ensure that the mesh is suffi-

I ciently fine or the polynomial orders are sufficiently high so that the

error of analysis is small. In other words, finite element solutions are

I intended to be in the asymptotic range either with respect to h -. 0 or
max

Pmin -~~Because the analysts' judgement is not always reliable, there is
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I
a growing interest in adaptivity. Adaptivity is a procedure for efficient

reduction of error on the basis of data already computed.

The most efficient error reduction technique is that for which the

path on the error versus cost diagram is the steepest. If we simplify the

problem and assume that cost is a simple ascending function of the number

of degrees of freedom then the most efficient error reduction process is

j the convergence mode characterized by the highest rate of convergence. In

reality the cost depends on other factors as well, some of which are dif-

ficult to quantify, nevertheless it is useful to establish asymptotic rates

of convergence for the various modes.

It is possible to make statements about asymptotic rates of convergence

a priori, i.e. without actually performing the computations, in terms of a

property of the approximated function, called "smoothness". In this paper

we present the definition of smoothness of functions; summarize the avail-

able theoretical knowledge concerning the asymptotic rates of the various

modes of convergence and present example problems from two-dimensional

elasticity. Finally we present some general conclusions concerning expected

relative computational efficiencies and aspects of reliability of the

various modes of convergence.

2



I
2. Basic Notation and Preliminaries

Throughout the paper, a point in the plane will be denoted by

I x = (Xlx 2 ). 0 wil represent a polygonal domain with vertices A i and

boundary F which is the union of (straight) line segments y V The

internal angles will be represented by ei. This notation is shown in

Fig. 1.I
A,

Ap e2 84// A
I

I

Fig. 1

Notation for the polygonal plane domain 2

We shall be concerned with functions defined on Q. It will be

necessary to classify these functions with respect to their smoothness.

In particular, we shall say that u e Hk (), k > 0 integer, when:

Hll k z 1t-Ii+jk ax a 2  2 )Hk(Q) 0<1i+j 2< k ax 1 x2 2*u dx < (i

l x. 2

. "

.9
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I
where dx dx dX2  The index k is a measure of the smoothness of u in

I that it indicates how many square integrable derivatives u has. We

Ishall say that a function is smooth when k has a high value.
As an example, let us consider the case of linear elastic fracture

Imechanics, mode I: The displacement vector components in plane strain

are i]:

IK
u -I.f)1/2 [ li2v+sin + O(r (2a)

ju2 - K 1 /2 sin 8 [2-2v-cos 2 J + O(r 3/2) (2b)

in which r and 8 are polar coordinates, centered on the crack tip, G and

v are material constants and K is the stress intensity factor. In this

case both u1 and u2 belong to H (a). Functions u1 and u2 are members of

a class of functions which have great importance in finite element

analysis. The general form of the class is:

v - Re [ry(logr) 6f(0)] Re[y] = a > 0, 6 > 0 (3)I
in which f(8) is a smooth function of 8. The origin of the polar

coordinates is typically located at a vertex of the domain 9.

The definition of the space of functions H (a) in eq. (1) is for k

integer only, nevertheless it is possible to generalize the notion of

H k( 2) to k > 0 fractional. See, for example, [2].

I

*
$ . .
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: The function v, defined by eq. (3), belongs to all spaces HSR (6),

s < +l. In general, v does not however belong to Ha+I(Q). Thus,

U 1 and u2 defined in eq. (2) belongs to H 3 (2-c ), e > 0 arbitrarily.

The foregoing definitions provide for establishing two fundamental

notions: If a function belongs to Hk () and the highest derivative in

the strain energy expression is not greater than k, then the function

has finite strain energy. Secondly, the fractional index k allows us to

quantify the idea of "smoothness" of functions. For example if 0 contains
r1/3 s

the point r - 0 then w = r cose belongs to all spaces H (Q), s < 4/3,

and is smoother than w2 - r /5cose which belongs to all spaces Hs(0),

s < 6/5.

Let r = U y., J = 1,2,...,m be the union of some sides of the

J k
polygon Q. Then if u belongs to H (Q), k > 1, and u - 0 on r , then we

write: u e Hk *(). In the case of vector functions u - (Ul,U2),

k r k
u C H (S) means that ui - H (D), i = 1,2.

The model problems to be discussed have been taken from two-dimensional

elasticity, assuming plane strain conditions. E and v refer, respectively,

to the modulus of elasticity and Poisson's ratio, (0 v<1/2). Function

u = (Ulu 2) is the displacement vector function. The strain energy

function is defined by:

2

E u 2 au I u 2 /u \
W(U 2(1- 2v) (1-v) fl..V( [10:l +2v - -x + (l-v)

-2v + a dx

.f----"I--I  j..d.. (4)

t + , l

U -
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!
Let us now define on r-r (the part of the boundary over which no

displacements are prescribed) the function T E (tl,t 2), representing

prescribed tractions, and on r the function t ((P1',2), representing

prescribed displacements. We assume that * 2 ds < -and there

1* r-r *
exists (i c H (Q) and - (P i on r*, i=1,2. If F r 0, then we have the

well known uniqueness theorem:

!1
Theorem 1. There exists exactly one function u = (ulu 2), ui c H (R)

such that:

(a) u, = on r

(b) u minimizes the potential energy functional

lr(u) - W(u) - , f tuids (5)
i=1 *r-r

among all vector functions u - (uu2), u e H 1(a) such that u. - on
*

r The proof of this theorem is given several textbooks, see for

example, [3]. If 1* r 0 and T satisfies the usual equilibrium conditions

then u exists and is determined by theorem 1, except for arbitrary rigid

body motion.

Assuming that T is smooth on every side y, e r-r and 0 is smooth

on every side yi r , the solution u that minimizes w(u) in theorem 1

is smooth on Q except for possible singular behavior at the corners Ai

of R. Such singular behavior is characterized by the coefficients a and

6 in eq. (3) which depend on the angle 6 and whether the two sides

adjacent to Ai belong to r or r-r • More detailed discussion of

this point is given in [4,5,6]. The important observation is that the
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I
space H () to which the solution u belongs is determined primarily by the

vertex angles of Q and the boundary conditions imposed on Q, provided

that the loading and prescribed displacements are smooth.

The strain energy W(u) defined in eq. (4) has finite value for any

u e: H ( ). Furthermore, -W(u) has all of the properties of a norm if

u H () and r # 0. In the following the norm lul E - '/-u) plays
r

essential role in measuring the error of finite element approximation.

In fact 11uli E is equivalent to the norm ljullHl(2 ) i.e. there exist CI ,

C2, independent of u, such that:

*i

ClllUll 1 I1u11E <  C211ull
H GO H (0)

* 6
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I
3. The Finite Element Method

We shall consider two different families of meshes: The first

family, denoted by y, is the family of the usual triangularizations with

bounded aspect ratio. A specific triangularization shall be denoted by

r. Thus: T e y. A specific triangle shall be denoted by TV Thus:

Ti E T e y. The largest side of Ti is denoted by hi and the maximum of

hi: h max(T) = max hi; the minimum of hi: h (T) = min h..
i mn i 2

Definition: The family y is quasiuniform if for any T e y we have:

max (T)
hmi n (T) -

The other family to be considered is a family of square meshes G

(with possible refinement). In this case we shall assume that all of the

sides of Q are parallel with the coordinate axes. Although this assumption

may seem to be overly restrictive from the practical point of view, in

reality it is not: Any plane domain can be subdivided into rectangular

figures with curved (or straight) sides such that each figure can be

mapped onto the unit square by smooth variable transformations.

An example of the square meshes is given in fig. 2. The nodal points

of the mesh which are either lying on r or are common vertices of four

squares are called regular, the others are called irregular. The term:

"quasiuniform mesh" is applied to the square meshes in the same way

as before, i.e. it means that the ratio of the largest element diagonal

to the smallest is bounded as the size of the largest element approaches

zero.

.~ /
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1

I

II
I

Fig. 2

Square mesh with refinement

i .

Over each finite element we approximate u = (u1 ,u2), u C H (Z), with

polynomials of order p and we assume that u c H (). The polynomials
*

assume the value of P = ((piS02) on r . The polynomial order p may vary

from element to element. In the following we shall assume also that the

interelement continuity requirements are enforced exactly and minimally,

i.e. overconformity and nonconformity are avoided. (The assumption that

u C HI (Q) guarantees conformity). The number of degrees of freedom,

after enforcement of the principal boundary conditions, is denoted by N.I .1
I We shall denote the set of functions u e H (n) which are polynomials

of degree at most Pi on every Ti T and satisfy the principal boundary

conditions D on r by Mr, = MF,(T,p, ). (The polynomial order may vary

j from element to element). Similarly, we shall define the set of functions

u, which are bilinear (i.e. products of linear polynomials in xI and

I x2) on every element of a square mesh and u = D on r by Nr,.

rI
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I
The finite element solution uFE ' Mr, (respectively UFE c Nr) is

I the function that minimizes the energy functional given by eq. (5) over

the set Mr* (respectively N,*).

Let u be the exact solution by theorem 1. Then it is not difficult

to prove that:

i Hu-I EI U 2 - in(u)-r(uFE)i - IW(u)-W(uFE)l (6)
E

i.e. the energy of the error of the finite element solution equals the

error of the energy [7].

I

.1

N .



4. The h and p Versions of the Finite Element Method

In the classical finite element method the polynomial degree is

fixed, usually at some low p value (p-1, 2, or 3) and the solution is

constructed in M, (T,p,O) such that hmax is small. Increased accuracy

is achieved by mesh refinement (hmax - 0). This strategy for increasing

the number of degrees of freedom is called the h-version of the finite

eLement method.

We can also fix the mesh T (with relatively small number of

triangles) and increase p, either uniformly or selectively. This

strategy for increasing the number of degrees of freedom is called the

p-version of the finite eLement method.

The h and p versions can be viewed as special cases of the finite

element method which allows increasing the number of degrees of freedom

by concurrent refinement of the mesh and increases in p.

-- .- -..
.! . ,..
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I
5. Model Problems

We now define the model problems used for illustrating the convergence

properties of the various strategies used for increasing the number of

degrees of freedom in the finite element method.

I
Problem 1: Square domain under plane strain conditions subjected to

Iimposed shear displacement. 0 is the square, as shown in Fig. 3.

I
Ir- I  3r l  n3

A 2 ___ A, +1 on Y1

1 €"° on l y 30- on2 1 BY
ii T - (0,0) on Y2 U Y4

I A31_ 1A We shall be concerned with
the case of E - 1, v = 0.3

and v - 0.4999. Because x1

Fig. 3 and x are axes of anti-

Square domain, example problem 1. symmetry, we shall compute

the finite element solution

u for the right upper quarter of the domain only. Consequently the
FE

number of degrees of freedom shall be related to this quarter only.

The estimated exact strain energies for the quarter domain are:

4 1 W 0.130680 for v - 0.3 and W - 0.127035 for v 0.4999.

I
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I
The solution u has singular behavior in the neighborhood of all

vertices Ai of the form given in eq. (3) (with the origin of the polar

coordinate system at vertex Ai). We observe that u e Hk-e (0), where k

depends on Poisson's ratio, as shown in fig. 4. The data in fig. 4 were

computed on the basis of reference 4.

j 2.1

2.0

k 1.8

1.7

0 0.1 Q2 0.3 0.4 0.5

Poisson's ratio

Fig. 4

The smoothness parameter k = 1+a as a function

of Poisson's ratio in example problem 1

Problem 2. The edge cracked square panel under plane strain conditions

subjected to uniform tension as shown in Fig. 5. In this case r - 6.

ji j The boundary conditions are:

T - (0,0) on r -y 1 u 6

T - (0,1) on Y1

T - (0,-l) on 6

I6
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I
We shall be concerned the case of E - 1, v = 0.3 and v - 0.4999. Because

x and x2 are axes of symmetry, we shall compute the finite element

solution UFE for the right upper quarter of the domain only and the

number of degrees of freedom shall be related to this domain only. The

estimated exact strain energies for the quarter domain are: W - 0.73422

for v - 0.3 and W = 0.60525 for v - 0.4999.

x~7,
'TA;:

3  As Am

-A A7

Fig. 5

Edge cracked square panel

The solution u has singular behavior at the crack tip (vertices A4 and

A9) of the form given by eq's. (2a,b). Thus u e H 3/2-c(). Unlike in

example problem I, the smoothness parameter k is independent of Poisson's

ratio.
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6. Asymptotic Error Analysis

When comparing alternative approaches in the finite element method,

Ithe error vs. cost relationship is of interest, with the error measured
in terms of displacements, stresses, stress resultants at specific

points, or in terms of energy. The error-cost relationship is often

simplified by making the assumption that the cost is some simple function

Iof the number of degrees of freedom. We shall follow the same course

and use the error vs. number of degrees of freedom as our basis for

comparison. Thus a given solution will be represented by a point on the

gerror vs. N diagram. We shall be concerned with the rate of change of

the error in energy with respect to N. N can be increased in various

ways: uniform or quasiuniform mesh refinement; non-quasiuniform mesh

refinement, uniform or non-uniform change in polynomial order on a fixed

I mesh, etc. These can be viewed as various "extensions" of the original

solution. We shall say that an extension is asymptotic or pre-asymptotic

depending on whether the error vs. N relationship is governed by one or

more parameters. When N is sufficiently large then the error can be

characterized well by a function p(N). Function i depends in general

on the smoothness of the approximated function. Thus the error can

be written as:

j ejeHE = (N) + o[p(N)]

with:

I (N) = CN -O

• k *
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I
where a (->O) is the governing parameter and o[iP(N)j represents terms

I that approach zero as N faster than *(N). In order to ensure that

the various extensions are compared on the same basis, we shall use a as

our basis for comparison. Thus we shall make the assumption that each

extension is in the asymptotic range. This is important from the point

of view of reliability: In the asymptotic range the error is not sig-

I nificantly influenced by optional input parameters (such as the kind of

mesh divisions used) and the error is generally small.

I

1
* I

.?.
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I
7. The h-version

We shall now summarize theorems concerning the asymptotic rate of

convergence in the h-version of the finite element method.

Theorem 2. Let the exact solution u belong in the space Hk (). Then for

a family of quasiuniform meshes y and the space of polynomial approxi-

mating functions Mr*(,P, ), in which p is fixed and uniform, we have:

IIuuFE- Ef C(,k,p,y)N- 1/2 min(k-l,p) 1 1ll Hk(Q) (7)

In eq. (7) the constant C does not depend on u or N [2,8]. The absolute

value of the exponent of N is called the asymptotic rate of convergence

or simply rate of convergence.

An inverse theorem exists also, which can be summarized as follows:

If we were able to observe the asymptotic rate of convergence for a given

problem for any quasiuniform triangular mesh and fixed p (assuming complete
-1

polynomials) to be 1/2 a (i.e. a = ):

I1u-uFEI E < CN
-1/2

E

then we would be able to make the following statements about the exact

solution u:

1) If I < a < p then u e HI+a-C(a), e > 0 arbitrarily.

2) If a > p then u is a polynomial.

3) If a - p then u ( H+ ).

For analysis of the inverse theorem we refer to [9,10].

Theorem 2 and its inverse (summarized in the preceding statements)

show that the asymptotic rate of convergence is completely characterized
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I
by the smoothness of u. In most problems of practical importance k is

I between 1.5 and 2, and u is not a polynomial, hence the asymptotic rate

of convergence is governed by k. Theorem 2 indicates that changing p

when p > k-i will not change the asymptotic rate of convergence, but

Iwill affect the accuracy of the solution because C depends on p.
We shall now illustrate theorem 2 on problem 1 with v - 0.3. The

Iuniform mesh for the quarter domain (with h variable) is shown in Fig. 6.
I
I x,

I - ///
X2I

Fig. 6

Uniform triangulation (Example problems I and 2).

* I
The computations for the uniform meshes were performed by means of

COMET-X, a computer program developed at Washington University. COMET-X

implements the p-version of the finite element method through the use of

exactly and minimally conforming hierarchic finite elements. The range

of polynomials permitted by COMET-X is from 1 to 8 [11,12].

-A_"



Adaptively constructed non-quasiuniform meshes are shown in Fig. 7.

I These meshes were generated and the computations performed by FEARS

(Finite Element Adaptive Research Solver), a computer program developed

at the University of Maryland. FEARS gives a reliable estimate of

error of the finite element solution [13].

The relative error is plotted against N on a log-log scale in Fig. 8

1 for various p values. The slope of these curves for large N is the

asymptotic rate of convergence. We note that in Fig. 8 (and in the

I other figures illustrating the error vs. N relationship) we measure the

I error by the square of the norm fHE See eq. (6).

It is seen that for uniform mesh refinement the error depends on

p but the slope is independent of p. With k S 1+ = 1.76 from Fig. 4,

the slope of 0.76 is as predicted by theorem 2.

I It has been proven that if the approximated function u is of the

functional form of eq. (3) then there exists a sequence of non-quasiuniform

I meshes such that the rate of convergence depends only on p, not on y and 6

as would be the case if uniform or quasiuniform meshes were used. The

proof is available in j8,10). The sequence of meshes having this character

can be constructed a priori or adaptively. The meshes constructed a

priori cause higher approximation error than adaptively constructed

ones, however.

I As seen in Fig. 8, the error vs. N curve for adaptively constructed

meshes approaches the slope of -1 for log-log scale, which is the maximum

rate of convergence possible for p -1.

a. 
%0
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I

I
I

I

I - - J -1--1-

N=31 N 41

N=81 N=93

II

--- - -1-

/ I -4- - -

- -- - ......-. ... . - - - -

N=97 N= 160

I Fig. 7

Adaptively constructed non-quasiuniform meshes

for example problem 1

I
B. e,,. .
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I

NUMBER OF DEGREES FREEDOM N

50 100 200 500 1000
-2I

10

-3 _h 1.4 5

ADAPTIVELY CONSTRUCTED
SQUARE MESHES (pzl)

- II

SM uI/" 1/{ /0 w

CC

0.20
5/ 1/14 w/

/3l/ \ /S

0."76 '/4 0.05

1" -8I

I I I

4 5 6 7

In N 1 /Fi g . 8

Example problem 1: Relative error in energy vs. number

* Iof degrees of freedom. H-version, Poisson's ratio: 0.3

1/5 

"0.10

l" ~ ~ ~ ~ ~ ~ ~ ~ / 1"/-"6'" .. . . '''..
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NUMBER OF DEGREES OF FREEDOM N

50 100 200 500 1000

- hal/4 1/6 1A0 1/13 /

pal

-20
_2 ADAPTIVELY CONSTRUCTED
-2 SQUARE MESHES (p:I)

10
z

-35

0.

w 1/w2U

1/44

1/55
-66 p.

-514Pz2 .2

3/ 4156

In N

Fig. 9

Example problem 1: Relative error in energy vs. number

of degrees of freedom. H-version, Poisson's ratio: 0.4999.
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Eq. 7 is valid for all Poisson's ratios 0 < v < 1/2, with the

constant C possibly dependent on v. Fig. 9 shows the behavior for

v - 0.4999. We see that the rate of convergence approaches the value

of k-l (in this case 0.69) in accordance with theorem 2 but for p - 1

the asymptotic range is entered at high N values (in this case beyond

the range of plotted values and probably beyond the round-off limitations

of digital computers).

The nearly degenerate case of v = 1/2 deserves special consideration

because two parameters are involved; 1/2 - v and h. The asymptotic

theory is applicable only when h is small with respect to 1/2 - v. It

is well known that elements with p = 1 perform poorly when v =_ 1/2 and

various special approaches, such as reduced integration, have been

proposed. The results shown in Fig. 9 indicate that mesh refinement

will not reduce the error when p = 1, on the other hand use of p > 3

essentially eliminates this difficulty. Theoretical analysis of this

effect is not yet available.
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I
8. The p-version

We shall now review the basic properties of the p-version.

I
Definition: Let pmax denote the largest polynomial order of the basis

I functions over all finite elements and let pmin denote the smallest. A

sequence of p-distributions is quasiuniform if:

Ip

PmaxI -<K

Pmin

Theorem 3. Let the exact solution u belong in the space Hk (0). Then

for the space of exactly and minimally conforming polynomial approximating

functions Mr*(T,p,D) in which the triangular mesh T is fixed and the sequence

of p-distributions is quasiuniform, for any e > 0 we have:

I lu-uFE 1 E < C(Q,k,t,K,e)N-1/2(k-l)+Eiluli k (8)

Theorem 3 is similar to theorem 2, however here C is independent of

I p. The proof is given in [141. Importantly, the inverse theorem, also

given in [14], states that if lu-uFE1l c CN-1/ 2a under the conditions of

theorem 3, then: (a) u c Hl+C (a*) where * is a subdomain of Q not
HIl+i/ 2-E(R

containing any of the finite element boundaries; (b) u c H •().

I This is significantly different from the inverse of theorem 2. In

particular, if the singular behavior of u is confined to the boundariesI *
of T (i.e. the singularity is not in 0 ) then the rate of convergence of

I the p version is twice the rate of convergence of the h-version, provided

that p > k-l in the h-version. In other words, the p-version can "absorb"

singular behavior at the boundaries of finite elements.

- I

.e.
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I

A very important case is when the singularity is at the corner of

the domain (and therefore at the vertex of one or more elements). Then

Iwe can prove the following theorem:

Theorem 4. Let u - uI+U2, uI having the functional form given in eq. (3)

with the origin at the vertex of the domain and u2 e Hk (0). Then for

I triangular meshes:

11 UFI I fui~ (E'k e [N - H111H00 + Nl1/2(k-l)+EII 21 H k (0]

I (9)

I A conjectural statement concerning the existence of theorem 4 and a

numerical demonstration of this theorem was given in [15]. The proof is

given in [141.

In summary, the p-version cannot have lower rate of convergence

than the h version based on quasiuniform meshes. The rate of convergence

I of the p-version is twice that of the h-version when the singularity is

at element boundaries and quasiuniform meshes are used. On the other

hand the h-version, with the use of optimally refined meshes (which are

not quasiuniform) and sufficiently high p can have higher rate of

1 convergence than the p-version.

I Fig. 10 illustrates that the rate of convergence of the p-version

is twice the rate of convergence of the h-version based on uniform mesh

refinement in the case of example problem 2. The fact that the asymptotic

range is entered at low p values is noted.

In Fig. 10 we also show the performance of adaptively constructed square

meshes for p - 1. Once again we see that the error vs. N curve approaches
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Example problem 2: Relative error in strain energy vs. number
of degrees of freedom. Comparison of the h and p versions.

Poisson's ratio: 0.3
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I
the slope of -1 on log-log scale for large N, which is the largest

asymptotic rate possible for p - 1. The larger pre-asymptotic rate is

due to the fact that at the beginning a very small number of additional

elements at the crack tip increase the accuracy significantly. Subse-

Iquently the domain must be refined away from the singularity, as shown
in Fig. 11, which causes the rate of convergence to become slower.

Fig. 12 illustrates that the point of entry into the asymptotic

range is not affected in the p-version to a significant degree when

Poisson's ratio is close to 0.5, but is strongly affected in the

h-version when p - 1. As in example 1, mesh refinement is not effective

for error reduction.

I
I

I
1

I
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I
i 9. Rate of Convergence when Pmax is Increased with Concurrent

Non-quasiuniform Mesh Refinement.

In this section we analyze some convergence properties of the

finite element method under the condition that mesh refinement is

accompanied by increases in p. First we quote the following basic

theorem:

Ik
Theorem 5: Let u e Hk (); let y be a family of quasiuniform triangular

meshes and let UFE be the finite element solution based on the space of

piecewise polynomial functions Mr* (r,p,O) with T E y; p quasiuniformly

distributed, and Pmin I k-l. Then, for any e > 0

_ k-l+

1 lJu-F lE< C(,k,)N 2 lull Hk() (10)

The proof of this theorem is given in [16]. The significance of this

theorem is that it joins theorems 3 and 4, making the constant C inde-

pendent of both p and T. An inverse theorem exists but is not known

as yet.

In Sections 7 and 8 we demonstrated that it is possible to generate

proper sequences of mesh such that the rate of convergence is independent

of the singularity but depends on the p-distribution. In the case of

corner singularities (of the form given by eq. 3) it can be shown (see

[16)) that properly refined sequences of mesh combined with suitable

sequences of p-distribution result in the error bound:

I l-u FE I < C(B)N- (11)
E

I
SI

- . b ..- . -.
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with 8 arbitrarily large. It is also known that under certain conditions

the bound is exponential [16].

We shall demonstrate on example problem 1 that 8 can be arbitrarily

large. The sequence of meshes and corresponding p-distributions are

shown in fig. 13. Each refinement reduces the size of the triangles at

the singularity by the factor (l-p). Thus the corresponding sides of

the triangles at the singularity are in geometric progression with

common ratio (l-p). We note that this refinement is not quasiuniform.

The p-distribution is also not quasiuniform: p - 1 for the two elements

at the singularity; p - 2 for the next group of four elements then p

progressively increases by increments of one for each additional group

of four elements away from the singularity.

The relative error in strain energy vs. N is plotted on log-log

scale in Figures 14 and 15 for two refinements characterized by p M 0.62

(the "golden rule" refinement which is shown in Fig. 13) and p - 0.90, a

much stronger refinement. It is seen that the slope of the relative

error vs. N curve progressively increases with N, indicating that 8 in

eq. (11) is an ascending function of N and can be arbitrarily large.

The results obtained with the p-version for two elements are also

shown in Figures 14 and 15. The indications are that within the range

of accuracy of practical interest the p-version is as effective in

reducing the error as the strategy just outlined.

Optimal combination of non-quasiuniform mesh refinement and

p-distribution is a delicate matter. For very high accuracy one can

expect the polynomial degrees for elements at the singularity to be

smaller than for the larger triangles away from the singularity. Never-

theless, in the pre-asymptotic range the optimal p-distribution can be

Aw
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Example problem 1: Non-quasiuniform mesh refinement and p-distribution.
(The p-values are shown for each element). The 18-element mesh with

P -a 5 is not shown.
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quite different. For general theoretical results and some numerical

results in one dimension the reader is referred to [16].



-36-

I0. Adaptivity

We have seen that if the number of degrees of freedom is increased

through proper combinations of mesh refinement and p-distribution, the

error will decrease very rapidly with increasing N. The choice of

proper mesh refinement and p-distribution depends on the smoothness of

the solution, however, and cannot in general be determined a priori.

It is possible to compute local measures of error, which indicate

the contribution of each element to the total error of approximation.

The local error measures provide a basis for establishing proper distri-

butions of the degrees of freedom.

A more detailed discussion of adaptivity will be presented in a

future paper.

'9

o, b **
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I
11. Conclusions

We can summarize the main results concerning asymptotic rates of

convergence in the finite element method as follows:

1. The asymptotic rate of convergence depends on the smoothness of the

function to be approximated and the order of the polynomial basis

functions (p). Smoothness is measured by the number of square

integrable derivatives (k) over the domain of interest, with k

generalized to fractional values.

2. In the h-version of the finite element method the rate of convergence

is the smaller of p and k-l if uniform or quasiuniform mesh refine-

ment is used. When the singular behavior is caused by corners,

there is a sequence of not quasiuniform meshes (called proper mesh

refinement) for which the rate of convergence is dependent only on p.

3. In the p version of the finite element method the rate of conver-

gence cannot be slower than in the h-version, provided that quasi-

uniform mesh refinement is used in the h-version. When the singu-

larity is at the boundaries of finite elements, the rate of con-

vergence of the p-version is twice that of the h-version provided

that quasiuniform mesh refinement is used and p > k-l in the

h-version.

4. It is possible to design optimal sequences of meshes and p-distribu-

tions for which the rate of convergence in the presence of singu-

larities is arbitrarily large; in fact the convergence can be

exponential. Such sequences are not quasiuniform and depend on

the function to be approximated. For this reason, the sequences

can be determined in practice only by an adaptive approach.
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5. For obvious practical reasons, finite element analyses should be

both efficient and reliable. This means that the point of entry

into the asymptotic range should occur at small values of N and

should not be sensitive to the input parameters. The p-version

meets this requirement in general better than the h-version. This

was demonstrated through the example of nearly incompressible

solids, in which the point of entry into the asymptotic range was

not affected in the p-version to an important degree but was signi-

ficantly shifted in the h-version.

6. Our discussion and comparisons were based on error vs. number of

degrees of freedom relationships. This is a simplified treatment

of the more important error vs. cost relationship. Detailed analysis

of marginal cost vs. error reduction is beyond the scope of this

paper, but we note that reasonably designed fixed meshes, combined

with uniform or selective increases in p provide the most promising

approach to efficient quality control in finite element analysis.

- . .: . . a -- ! ... it I i
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